Space-time high-resolution data of the potential insolation and solar duration for Montenegro

Keywords: potential insolation, solar duration, Montenegro


The assessment of the potential use of renewable energy resources requires reliable and precise data inputs for sustainable energy planning on a regional, national and local scale. In this study, we examine high spatial resolution grids of potential insolation and solar duration in order to determine the location of potential solar power plants in Montenegro. Grids with a 25-m spatial resolution of potential solar radiation and duration were produced based on observational records and publicly available high-resolution digital elevation model provided by the European Environment Agency. These results could be further used for the estimation and selection of a specific location for solar panels. With an average annual potential insolation of 1800 kWh/m² and solar duration of over 2000 h per year for most of its territory, Montenegro is one of the European countries with the highest potential for the development, production, and consumption of solar energy.


Adeala, A. A., Huan, Z., Enweremadu, C. C. (2015). Evaluation of global solar radiation using multiple weather parameters as predictors for South Africa provinces, Thermal Science, Vol. 19, Suppl. 2, pp. 495-509.

Almorox, J., Hontoria, C., Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain), Applied Energy, Vol. 88, No. 5, pp. 1703-1709.

Ångström, A. (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation, Quarterly Journal of the Royal Meteorological Society, Vol. 50, No. 210, pp. 121-126.

Badescu, V., Dumitrescu, A. (2013). New models to compute solar global hourly irradiation from point cloudiness, Energy Conversion and Management, Vol. 67, pp. 75-91.

Beyer, H. G., Czeplak, G., Terzenbach, U., Wald, L. (1997). Assessment of the method used to construct clearness index maps for the new European solar radiation atlas (ESRA), Solar Energy, Vol. 61, No. 6, pp. 389-397.

Böhner, J., McCloy, K. R., Strobl, J. (Eds.). (2006). SAGA - Analysis and Modelling Applications. Göttingen, Germany: Goltze.

Burić, D., Ducić, V., Mihajlović, J. (2013). The climate of Montenegro: Modificators and types - part one, Bulletin of the Serbian Geographical Society, Vol. 93, No. 4, pp. 83-102.

Burić, D., Ducić, V., Mihajlović, J. (2014). The climate of Montenegro: Modificators and types - part two, Bulletin of the Serbian Geographical Society, Vol. 94, No. 1, pp. 73-90.

Burić, D., Luković, J., Bajat, B., Kilibarda, M., Živković, N. (2015). Recent trends in daily rainfall extremes over Montenegro (1951-2010), Natural Hazards and Earth System Sciences, Vol. 15, No. 9, pp. 2069-2077.

Chen, J.-L., Li, G.-S., Wu, S.-J. (2013). Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration, Energy conversion and management, Vol. 75, pp. 311-318.

Cignetti, M., Guenzi, D., Ardizzone, F., Allasia, P., Giordan, D. (2020). An Open-Source Web Platform to Share Multisource, Multisensor Geospatial Data and Measurements of Ground Deformation in Mountain Areas, ISPRS International Journal of Geo-Information, Vol. 9, No. 1, Article No. 4.

Conrad, O. (2010). Module Potential Incoming Solar Radiation. SAGA-GIS Module Library Documentation (v2.2.2), [Accessed: 24 Nov 2019].

D'Agostino, V., Zelenka, A. (1992). Supplementing solar radiation network data by co‐Kriging with satellite images, International Journal of Climatology, Vol. 12, No. 7, pp. 749-761.

Djurovic, G., Cetkovic, J., Djurovic, V., Jablan, N. (2018). The Paris Agreement and Montenegro’s INDC: Assessing the Environmental, Social, and Economic Impacts of Selected Investments, Polish Journal of Environmental Studies, Vol. 27, No. 3, pp. 1019-1032.

Dubayah, R., Rich, P. M. (1995). Topographic Solar-Radiation Models for GIS, International Journal of Geographical Information Science, Vol. 9, No. 5, pp. 495-519.

Ducić, V., Luković, J., Burić, D., Stanojević, G., Mustafić, S. (2012). Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types, Natural Hazards and Earth System Sciences, Vol. 12, No. 3, pp. 687-697.

Ehnberg, J. S., Bollen, M. H. (2005). Simulation of global solar radiation based on cloud observations, Solar Energy, Vol. 78, No. 2, pp. 157-162.

Energy Community (2014). National Renewable Energy Action Plan of Montenegro to 2020, [Accessed: 24 Nov 2019].

Energy Community (2020). Montenegro Third Progress Report on promotion and use of energy from renewable energy source,

[Accessed: 24 Nov 2019].

European Environment Agency (2016). European Digital Elevation Model (EU-DEM), version 1.1, [Accessed: 20 Jan 2019].

European Parliament, Council of the European Union (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance), [Accessed: 24 Nov 2019].

European Parliament, Council of the European Union (2018). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (Text with EEA relevance), [Accessed: 24 Nov 2019].

European Union (2012). Energy roadmap 2050. Luxembourg: Publications Office of the European Union.

Federal Ministry for Economic Affairs and Energy (2019). Renewable Energy Sources in Figures: National and International Development, 2018, [Accessed: 24 Nov 2019].

Fraunhofer ISE (2019). Recent Facts about Photovoltaics in Germany (version of October 14, 2019) [Accessed: 24 Nov 2019].

Fu, P., Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry, Computers and electronics in agriculture, Vol. 37, No. 1-3, pp. 25-35.

Gallant, J. C., Wilson, J. P. (1996). TAPES-G: A Grid-Based Terrain Analysis Program for the Environmental Sciences, Computers & Geosciences, Vol. 22, No. 7, pp. 713-722.

Government of Montenegro, Ministry of European Affairs (2017). Contribution to the European Commission Report on Montenegro for the period 1 October 2016 – 20 October 2017, [Accessed: 24 Nov 2019].

Hassan, G. E., Youssef, M. E., Mohamed, Z. E., Ali, M. A., Hanafy, A. A. (2016). New temperature-based models for predicting global solar radiation, Applied energy, Vol. 179, pp. 437-450.

Hofierka, J. (2013). Topographic Solar Radiation Modeling for Environmental Applications. In C. Richter, D. Lincot, C. A. Gueymard (Eds.), Solar Energy. New York: Springer, pp. 715-730.

Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. A., Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation, Renewable and Sustainable Energy Reviews, Vol. 41, pp. 284-297.

International Renewable Energy Agency (2019). Renewable Power Generation Costs in 2018, [Accessed: 24 Nov 2019].

Italian Ministry for the Environment, Land and Sea (2007). Renewable Energy Resource Assessment Republic of Montenegro: Wind, Solar and Biomass Energy Assessment (Doc. No. 06-407-H1), [Accessed: 24 Nov 2019].

JeeHee, K., Choen, K., MuWoo, P. (2019). Community Mapping for Enabling Response to Urban Flood. In Proceedings of 1st Tunisian SMART CITIES Symposium. Tunis: Telecommunication Research and Studies Center (CERT), pp. 25-27. [Accessed: 10 Dec 2019].

Journée, M., Bertrand, C. (2010). Improving the spatio-temporal distribution of surface solar radiation data by merging ground and satellite measurements, Remote Sensing of Environment, Vol. 114, No. 11, pp. 2692-2704.

Kannan, N., Vakeesan, D. (2016). Solar energy for future world: - A review, Renewable and Sustainable Energy Reviews, Vol. 62, pp. 1092-1105.

Kostić, R., Mikulović, J. (2017). The empirical models for estimating solar insolation in Serbia by using meteorological data on cloudiness, Renewable Energy, Vol. 114, Part B, pp. 1281-1293.

Li, H., Ma, W., Lian, Y., Wang, X., Zhao, L. (2011). Global solar radiation estimation with sunshine duration in Tibet, China, Renewable energy, Vol. 36, No. 11, pp. 3141-3145.

Liu, M., Bárdossy, A., Li, J., Jiang, Y. (2012). GIS-based modelling of topography-induced solar radiation variability in complex terrain for data sparse region, International Journal of Geographical Information Science, Vol. 26, No. 7, pp. 1281-1308.

Lu, N., Qin, J., Yang, K., Sun, J. (2011). A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data, Energy, Vol. 36, No. 5, pp. 3179-3188.

Luković, J. B., Bajat, B. J., Kilibarda, M. S., Filipović, D. J. (2015). High Resolution Grid of Potential Incoming Solar Radiation for Serbia, Thermal Science, Vol. 19, Suppl. 2, pp. 427-435.

Marić, I., Pucar, M., Kovačević, B. (2016). Reducing the impact of climate change by applying information technologies and measures for improving energy efficiency in urban planning, Energy and Buildings, Vol. 115, pp. 102-111.

Matsuda, Y., Fujita, K., Ageta, Y., Sakai, A. (2006). Estimation of atmospheric transmissivity of solar radiation from precipitation in the Himalaya and the Tibetan Plateau, Annals of Glaciology, Vol. 43, pp. 344-350.

Mekhilef, S., Saidur, R., Safari, A. (2011). A review on solar energy use in industries, Renewable and sustainable energy reviews, Vol. 15, No. 4, pp. 1777-1790.

Miklánek, P. (1993). The estimation of energy income in grid points over the basin using simple digital elevation model, Annales Geophysicae, Vol. 11, pp. 296-312.

Ministarstvo ekonomije Crne Gore (2014). Strategija razvoja energetike Crne Gore do 2030. godine (Bijela knjiga), [Accessed 24 Nov 2019].

Ministarstvo za zaštitu životne sredine, kopna i mora Republike Italije (2007). Procjena potencijala obnovljivih izvora energije u Republici Crnoj Gori: Sažeti prikaz procjene energetskog potencijala vjetra, sunčevog zračenja i biomase (Doc. No. 06-407-H2). [Accessed 24 Nov 2019].

OSGeo (2020). OSGEO Geoserver,[Accessed 10 Dec 2019].

Petersen, J.F., Sack, D., Gabler, R.E. (2016). Physical Geography (11th ed.). Boston, MA: Cengage Learning.

Prescott, J. A. (1940). Evaporation from water surface in relation to solar radiation, Transactions of the Royal Society of Australia, Vol. 64, pp. 114-125.

Protić, D. D., Kilibarda M. S., Nenković-Riznić M. D., Nestorov, I. Dj. (2018). Three-dimensional urban solar potential maps: Case study of the i-Scope Project, Thermal Science, Vol. 22, No. 1B, pp. 663-673.

Regulatorna agencija za energetiku Crne Gore (2018). Izvještaj o stanju energetskog sektora Crne Gore u 2017. godini [online]. [Accessed 24 Nov 2019].

Ruiz‐Arias, J. A., Tovar‐Pescador, J., Pozo‐Vázquez, D., Alsamamra, H. (2009). A comparative analysis of DEM based models to estimate the solar radiation in mountainous terrain, International Journal of Geographical Information Science, Vol. 23, No. 8, pp. 1049-1076.

Rustemli, S., Dincer, F., Unal, E., Karaaslan, M., Sabah, C. (2013). The analysis on sun tracking and cooling systems for photovoltaic panels, Renewable and Sustainable Energy Reviews, Vol. 22, pp. 598-603.

Stackhouse, P. W., Zhang T., Barnett, A. J., Macpherson, B., Mikovitz, C. (2020). The POWER Project (Version 1.0), [Accessed 20 Jan 2019].

Suehrcke, H., Bowden, R. S., Hollands, K. G. T. (2013). Relationship between sunshine duration and solar radiation, Solar Energy, Vol. 92, pp. 160-171.

Šúri, M., Hofierka, J. (2004). A new GIS‐based solar radiation model and its application to photovoltaic assessments, Transactions in GIS, Vol. 8, No. 2, pp. 175-190.

Tovar‐Pescador, J., Pozo‐Vázquez, D., Ruiz‐Arias, J. A., Batlles, J., López, G., Bosch, J. L. (2006). On the use of the digital elevation model to estimate the solar radiation in areas of complex topography, Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, Vol. 13, No. 3, pp. 279-287.

Waldau-Jäger, A. (2016). PV Status Report 2016, [Accessed 24 Nov 2019].

Wang, Y., Zhang, L. (2010). Relationship between global solar radiation and sunshine duration for Northwest China, International Journal of Physical Sciences, Vol. 5, No. 7, pp. 1023–1033.

Yacef, R., Mellit, A., Belaid, S., Şen, Z. (2014). New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaïa, Algeria, Energy conversion and management, Vol. 79, pp. 606-615.

Yang, K., Koike, T. (2002). Estimating surface solar radiation from upper-air humidity, Solar Energy, 72(2), pp.177–186.

Yao, W., Zhang, C., Wang, X., Zhang, Z., Li, X., Di, H. (2018). A new correlation between global solar radiation and the quality of sunshine duration in China, Energy Conversion and Management, Vol. 164, pp. 579-587.

Yu, X. W., Liu, H. Y., Yang, Y. C., Zhang, X., Li, Y. W. (2013). GeoServer Based Forestry Spatial Data Sharing and Integration, Applied Mechanics and Materials, Vol. 295, No. 4, pp. 2394-2398.

Zhao, N., Zeng, X., Han, S. (2013). Solar radiation estimation using sunshine hour and air pollution index in China, Energy conversion and management, Vol. 76, pp. 846-851.

Original Scientific Paper - Second Part