The geometry of trifocal curves with applications in architecture, urban and spatial planning

  • Maja Petrović University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia
  • Bojan Banjac University of Belgrade, Faculty of Electrical Engineering, Belgrade, Serbia and University of Novi Sad, Faculty of technical sciences – Computer Graphics Chair, Novi Sad, Serbia
  • Branko Malešević University of Belgrade, Faculty of Electrical Engineering, Belgrade, Serbia
Keywords: Fermat-Torricelli-Weber point, trifocal curve, Java applet

Abstract

In this paper we consider historical genesis of trifocal curve as an optimal curve for solving the Fermat’s problem (minimizing the sum of distance of one point to three given points in the plane). Trifocal curves are basic plane geometric forms which appear in location problems. We also analyze algebraic equation of these curves and some of their applications in architecture, urbanism and spatial planning. The area and perimeter of trifocal curves are calculated using a Java application. The Java applet is developed for determining numerical value for the Fermat-Torricelli-Weber point and optimal curve with three foci, when starting points are given on an urban map. We also present an application of trifocal curves through the analysis of one specific solution in South Stream gas pipeline project.

References

Barrallo, J. (2011) Ovals and Ellipses in Architecture, Proceedings of ISAMA 2011 Tenth Interdisciplinary Conference of the International Society of the Arts, Mathematics, and Architecture, Chicago, Illinois: Columbia College, pp. 9-18.

Bazik, D., Dželebdžić, O. (2012) Web-based support of spatial planning in Serbia, SPATIUM International Review, No. 28, December 2012, pp.67-73.

Boltyanski, V., Martini, H., Soltan, V. (1999) Geometric methods and optimization problems, Dordrecht, Netherlands: Kluwer Acad. Publ.

Brazil, M., Graham, R. L., Thomas, D. A., Zachariasen, M. (2013) On the History of the Euclidean Steiner Tree Problem, Archive for History of Exact Sciences, Berlin Heidelberg: Springer.

Crux Mathematicorum - problem 2215 (1997) pp. 121-122. http://journals.cms.math.ca/CRUX/, accesssed 1st Apr 2013

de Fermat P. (1679), Oeuvres de Fermat, Livre I, Paris, English edition 1891, Chapter V: Ad methodum de maxima et minima appendix, p. 153.

de Pérgamo, A., Viviano, V. (1659) De maximis et minimis geometrica divinatio in quintum conicorum Apollonio Pergaei, Chapter: Ad lib de max et min, Apendix Monitvm, Probl.I, Prop VI, pp. 143-150.

Descartes, R. (1638) Oeuvres de Descartes (publiées par Charles Adam et Paul Tannery 1897-1913), Tome II, Paris.

Drezner, Z, Hamacher, H. W. (eds.) (2002) Facility location: Applications and Theory. Berlin: Springer-Verlag, pp. 1-11.

Erdös, P., Vincze, I. (1982) On the approximation of convex, closed plane curves by multifocal ellipses, J. Appl. Probab., 19A, pp. 89–96.

Farahani, R. Z., Hekmatfar, M. (2009) Facility Location: Concepts, Models, Algorithms and Case Studies, Chapter 1: Marzie Zarinbal, Distance Functions in Location Problems, Berlin Heidelberg: Springer-Verlag, pp. 5-18.

Groß, C., Strempel, T-K. (1998) On generalizations of conics and on a generalization of the Fermat- Torricelli problem, American Mathematical Monthly, pp. 732-743.

Harman P. M. (1990) The Scientific Letters and Papers of James Clerk Maxwell, Vol.1, 1846- 1862, Cambridge University Press, pp. 35-62. Heinrich, D. (1965) 100 Great Problems Of Elementary Mathematics their history and solution, New York: Dover Publication, Inc. pp. 361-363.

Kirszenblat, D. (2011) Dubins networks, Thesis, Department of Mathematics and Statistics, The University of Melbourne.

Khilji, M. J. (2004) Multi Foci Closed Curves, Journal of Theoretics Vol.6-6, p. 6.

Kupitz, Y. S., Martini, H., Spirova, M. (2013) The Fermat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach, Journal of Optimization Theory and Applications, pp. 1-23.

Mahon, B. (2003) The Man Who Changed Everything – the Life of James Clerk Maxwell, Hoboken, NJ: Wiley, p. 16.

Maxwell, J. C. (1847) On the description of oval curves, and those having a plurality of foci, Proceedings of the Royal Society of Edinburgh, Vol. ll, 1846., ’On Oval Curves’, 1847., ’On Trifocal Curves’, 1847.

Melzak, Z.A., Forsyth, J.S. (1977) Polyconics 1: Polyellipses and optimization, Quart. Appl. Math., 35, pp. 239–255.

Mladenović, N. (2004) Kontinualni lokacijski problemi, Beograd: Matematički institut SANU.

Nie, J., Parrilo, P. A., Sturmfels, B. (2008) Semidefinite representation of the k-ellipse, Algorithms in algebraic geometry. New York:Springer, pp. 117-132.

Oikonomia, http://www.oikonomia.info/wp-content/uploads/2013/05/Southstream-route.jpg, accessed 24th Nov 2013.

Petrović, M. (2010) Jajaste krive i generalizacija Hugelšeferove konstrukcije, Master thesis, Faculty of Architecture, University of Belgrade.

Petruševski, Lj., Dabić, M., Devetaković, M. (2010) Parametric curves and surfaces -MATHEMATICA demonstrations as a tool in exploration of architectural form, SPATIUM International Review, No. 22, July 2010, pp. 67-72.

Rosin, P. (2000) On Serlio's Construction of Ovals, Nexus Network Journal, vol. 2, no. 3.

Rosin, P. (2004) On the construction of ovals, Proceedings of International Society for the Arts, Mathematics, and Architecture (ISAMA), pp. 118-122.

Sahadevan, P.V. (1987) The theory of the egglipse - a new curve with three focal points, Int. J. Math. Educ. Sci. Technol. 18(1), pp. 29-39.

Sahadevan, P.V. (1974) Evolution of ‘N’ polar curves by extension of focal points (by more than two) of an Ellipse, Proceedings of the Indian Academy of Sciences - Section A, 79(6), pp. 269-281.

Sándor, J. (2005) On Certain Inequality by Visschers, Octogon Math. Mag. 13(2), pp. 1053-1054.

Sekino, J. (1999) n-Ellipses and the minimum distance sum problem, The American mathematical monthly, 106(3), pp.193-202.

Simpson, T. (1750) Doctrine and applications of fluxions, London, p. 27.

Soothill, G. (2010) The Euclidean Steiner Problem, Report, Department of Mathematical Science, Durham University, England (Undergraduate Departmental Prizes).

Teodorović, D. (2009) Transportne mreže, Poglavlje 9: Lokacijski problem, Saobraćajni fakultet, Beograd, pp.389-399.

Torricelli E., Loria G., Vassura G. (1919) Opere de Evangelista Torricelli Vol I, Part 2, English edition, Faënza, pp. 90–97.

Varga, A., Vincze, Cs. (2008) On a lower and upper bound for the curvature of ellipses with more than two foci, Expositiones Mathematicae 26(1), pp.55–77.

Volek, J. (2006) Location analysis – Possibilities of use in public administration, Verejná správa 2006, Univerzita Pardubice, pp. 84–85.

Watanabe, D., Majima, T., Takadama, K., Katuhara, M. (2009) Generalized Weber Model for Hub Location of Air Cargo, The Eighth International Symposium on Operations Research and Its Applications (ISORA’09), Zhangjiajie, China, pp. 124–131.

Weber, A. (1929) [translated by Carl J. Friedrich from Weber's 1909 book Über den Standort der Industrien], Alfred Weber’s Theory of the Location of Industries, Chicago: The University of Chicago Press.

Zuber, M., Štulić, R. (2006) O grafičkim mogućnostima programskog paketa Maple, The 23rd Conference on Descriptive Geometry and Engineering Graphics, MoNGeometrija 2006, Novi Sad Proceedings, pp. 50-59.

Published
2014-12-30
Section
Professional Paper